
b .
; ' 4

A Class Hierarchical, Object-Oriented Approach
to Virtual Memory Management*

Vincent F. Russo
Roy H. Campbell
Gary M. Johnston

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 West Springfield Avenue
Urbana, Illinois 61801-2987 USA

Abst rac t

The Choices family of operating systems exploits class hierarchies and object-oriented pro-
gramming to facilitate the construction of customized operating systems for shared memory and
networked multiprocessors. The software is being used in the Tapestry' laboratory to study the
performance of algorithms, mechanisms, and policies for parallel systems. This paper describes
the architectural design and class hierarchy of the Choices virtual memory management system.

The software and hardware mechanisms and policies of a virtual memory system implement
a memory hierarchy that exploits the trade-off between response times and storage capacities. In
Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of
those abstractions implement a virtual address space, segmentation, paging, physical memory
management, secondary storage, and remote (that is, networked) storage. Captured in the
notion of a memory hierarchy are classes that represent memory objects. These classes provide
a storage mechanism that contains encapsulated d a t a m h a v e methods to read or write the
memory object. Each of these classes provide specialisa6ohs to represent the memory hierarchy.
They may be cached in physical memory. This paper describes the motivation for an object-
oriented, classhierarchical approach to virtual memory system design, and describes the overall
architecture of such an approach, as it has been applied to Choices.

Keywords: Object-oriented design, class hierarchies, virtual memory, multiprocessors, operat-
ing systems, object-oriented operating systems, customizable operating systems, extensible
operating systems.

1

1 Introduction

The Choices [2,3] operating system architecture is motivated by the difficulties of building operating

systems for specialized high-performance applications on large collections of heterogeneous shared

memory and networked multiprocessors. The conventional operating system provides applications

with a “kernel” that offers a predefined selection of system services that cannot be easily extended to

provide specialized services for particular concurrent applications on particular parallel hardware.

Choices uses object-oriented programming and class hierarchies to organize and facilitate solutions

to this problem. An operating system implemented with the Choices architecture currently runs

on the Encore Multimax,2 and is currently being ported to the Intel iPSC/23 hypercube.

Before going into the details of the Choices memory management classes, a brief overview of

the general Choices class hierarchy is appropriate. Some of the major classes in the first level of

the Choices class hierarchy are shown in Table 1. Each subclass redefines and/or adds methods

defined for class Object. Class MemoryRange provides the base for storage management in a

Choices operating system. Instances of class Process are the basic units of execution in a Choices

system. A Process is represented by the information necessary to execute it which includes a

copy of the processor state (;.e., CPU registers) and a description of the virtual memory in which

it expects to execute. Processes are scheduled and executed within a Choices system by being

added to and removed from PmessContainers. Class ProcessContainer is specialized to provide

for Process execution and schedding. A Process is moved fiom one ProcessContainer to another

by add and remove operations in order to achieve scheduling and Process execution. Subclasses of

ProcessContainer provide scheduling disciplines. Class Ezception provides the basis for exception

’Multimax is a trademark of Encore Computer Corporation.
’iPSC is a trademark of Intel Corporation

2

' I

Object
fMemoryRange
f Process
TProcessContainer

Choices Base Classes
Class I I Met hods

ctor dtor - - -
ctor dtor reserve release physicalAddress
ctor dtor - - -
ctor dtor add remove -

I tException ll ctor I dtor I raise I - I - I
Table 1: Choices Base Classes

I Legend
Symbol Meaning

method Definition of method.
method Redefinition of method. n Subclass or inherited method.

I - I1 Undefined method. I
~ ~

handling, including traps and interrupts. The raising of an Exception causes Exception-specific

movement of Processes between ProcessContainers.

In this paper, we discuss the classes within Choices that support virtual memory management.

The Choices design exploits virtual memory techniques for efficient interprocess communication

via shared memory. Any communication required between the applications is supported by op-

erations on shared objects or directly via shared virtual memory. Choices support for networked

multiprocessors extends the virtual memory across the n e t ~ o r k . ~ After discussing related research,

we introduce the virtual memory approach adopted in Choices. Next we discuss a class hierarchy

that implements this approach and outline the major methods of each of the classes. Finally, we

review our design with respect to common computer architectures and summarize the status of our

research.

~

'Message-oriented kernels like the V Kernel [4], Accent [9], Amoeba [Il l , and MICROS [I21 build specific commu-
nication schemes into the lowest levels of the kernel. For example, some systems implement a few ways of providing
"virtual" messages like "fetch on access." However, these systems are not easy to adapt to support other approaches
such M "send process on read" or "remote procedme call on execute."

3

2 Problem

Virtual memory systems are used in many popular operating systems. They have met with much

success at providing large address spaces on systems with limited physical memory, thereby sim-

plifying the programming of applications with large memory requirements. Virtual memory also

provides protection for a program’s data and code, both within and between applications, and

facilitates code and data sharing. Virtual memory systems include three major components: an

address translation mechanism, a virtual memory placement and replacement algorithm, and a

protection mechanism.

Each executing Process has an appropriate translation table that maps valid virtual memory

addresses to physical memory addresses. Virtual memory addresses are translated by hardware

into physical memory addresses. The hardware usually uses an associative cache that is loaded

from the translation table to reduce the number of table look-ups it needs to perform. For physical

memory allocation purposes, the virtual memory space of a process is partitioned into pages, if

the partitions are all the same size (as is usually the case), or segments if not [l, 71. Variable size

segments do not form a contiguous address space. Two-level paging or segmented paging schemes

may be employed in which contiguous pages are grouped into larger sections. Such schemes permit

the virtual address space to be divided into non-contiguous virtual address subspaces [5 , 61.

When the contents of a potentially valid virtual address is not resident in physical memory, it

is stored on a backing store (such as a disk) and the translation table page or segment entry for

that address is marked non-resident. A process attempting to access that address suffers a page

or segment fault. The virtual memory placement algorithm retrieves the contents of the page or

segment referred to by that address from a backing store and updates the translation table. Then

4

the instruction that caused the fault is restarted (or continued).

By itself, the memory placement algorithm may eventually fill physical memory. The memory

replacement algorithm copies pages or segments back onto the backing store. Such an algorithm

seeks to replace pages or segments that are not needed in the immediate future in order to minimize

i/o traffic between main memory and the backing store.

The virtual memory mechanism is used in time-sharing systems to protect data from “incorrect”

access by processes executing in different virtual address spaces. The mechanism may also be used

to share data or read-only code between processes.

Our objectives in building the virtual memory management system for Choices are to create an

object-oriented model for the entities in a shared memory multiprocessor virtual memory system

and to create a class hierarchy that organizes different variants of this model for different machines

and applications. In rewriting virtual memory management in a class hierarchical, object-oriented

manner, we seek to provide several mechanisms for a multiprocessor environment:

0 Efficient sharing of memory objects between processes executing in parallel;

0 Efficient context switching between interrupt processing and user process execution;

0 Very large virtual memory spaces that are bigger than physical memory;

0 The use of arbitrary, multiple backing stores;

0 Access to memory-mapped persistent objects whose lifetimes exceed the lifetime of an indi-

vidual process or its virtual memory;

0 Efficient process creation and message passing primitives that only copy shared memory

5

objects (such as data or code) when nece~sary;~

0 The design and implementation of appropriate page replacement algorithms for memory

ob jectq6

0 Uniform and consistent memory management and buffering schemes that can be applied to

virtual memory, such as input/output buffering, files and file bd€er caches, and message

caches.

Choices has adopted some of the design ideas employed in the Mach [8] virtual memory man-

agement system. In particular, Choices adopts the idea of a “memory object” (a Choices Memory-

Object) that is cached in physical memory. Choices departs from Mach in its object-oriented, class

hierarchical approach, allowing greater flexibility and customizability for given environments and

applications.

Although many of the applications of the Choices virtual memory management scheme have

yet to be explored, we believe the class hierarchical object-oriented approach we have adopted will

allow us to attack them in a rigorous sequence of experiments.

3 Virtual Memory Framework

We will refer to the collection of data representing an addressable entity as a memory object.

Memory objects may be defined by system and application software in Choices and include program

text, stack space, disks, heaps, kernel data spaces, and files. The memory object usually resides in a

‘That b, they employ copy-on-write shared-memory techniquer to minjmise unnecessary copying.
Mort page replacement schemer in virtual memory managanent rystems are global. Instead, in Choices, we allow

localised page replacement schemer where each memory object may have its own algorithm that optimizes the page
traffic for that type of memory object.

6

6

semi-permanent form on a backing store or disk. It may also be distributed among loosely-coupled

nodes connected by a networks.

Memory objects are either mapped into the virtual address space of a process or made accessable

through a read/write interface (similar to the traditional notion of a file.) A virtual address mapped

memory object is accessed by the processor’s read/write instructions through the virtual address

translation mechanism. The data of the memory object that is stored in physical memory by the

virtual memory system is a cache of the object. Unlike standard virtual memory implementations,

the non-resident data of each memory object is stored on its own backing store on secondary

storage. When the cache releases or reuses the physical memory storing memory object data that

has been modified, the backing store is updated with the data to ensure the consistency of the

memory object .
In Choices, the domain abstraction maintains a virtual address space for a process. It assigns

an virtual address range for each of the virtual memory mapped memory objects. Figure 3 shows

how the addresses of a collection of virtual memory mapped memory objects form an entire virtual

address space.

Each virtual memory mapped memory object has a physical memory cache of some or all of its

data. Unlike conventional virtual memory systems, Choices supports a multi-level cacheing scheme

for its virtual memory mapped memory objects. The domain encapsulates and hides the details

of maintaining multi-level caches for each memory object and, using status information from the

caches, supports a multi-level cacheing policy.

Processes may share virtual memory mapped memory objects. The domain of each process

may provide its process with a different set of access rights to the same shared memory object. In

a shared memory architecture, the processes sharing a memory object may share its physical cache

7

I

- - - - - - - - -

System

cache +
cache cache

Memory
Ob j ect

1

User
Stack

- - - - - - - -

Unused

- - - - - - - -

Shared
Data

- - - - - - - -

User
Data

- - - - - - - -

User
Program

- - - - - - - -

System

Domain

Figure 1: Conceptual View of Domains, Caches and Memory Objects

8

as shown in the Figure 3. Sharing across a network in a distributed system can be accomplished by

having local caches on each node cache the same memory object and employing a cache consistency

protocol between local caches and the memory object.

Processes may change the memory objects accessible from a domain as part of a protection

scheme that implements persistent objects. (Persistent objects can exist for longer periods of time

than the processes that access them.) On entry to a method of a persistent object, the domain

of a process is modified to reflect the memory objects that are encapsulated by that persistent

object. On exit from the method, the domain is modified to remove those memory objects that are

encapsulated by the persistent object.

In the subsequent sections, we explain the concepts of memory object, memory object cache,

and domain in more detail.

4 Virtual Memory Class Hierarchy

The Choices virtual memory system implementation models the components of a virtual memory

management system as instances of memory management classes (objects) and operations on them

(methods). These classes are written in an object-oriented programming language (C++ [lo]). The

components of the model are organized as a class hierarchy. In general, similar components will,

if they are intended to function alike, be subclasses of a more abstract class that describes the

common attributes the components inherit. This method of software organization is very powerful

and supports code reuse. Some of the behavior of components in the system can be inferred by

the position of their class definition in the class hierarchy. The hierarchy also allows specialization

of algorithms and data structures for specific hardware needs without compromising the overall

9

I Choices Address'hanrlation Classes I

Table 2: Choices AddressTranslationClasses

integrity of the design.

In this section, we introduce the class hierarchy that implements the Choices virtual mem-

ory system. The hardware dynamic address translation is managed by the AddressTranslation

classes. The Choices machine independent virtual memory management scheme is implemented by

the Domain, MemoryObject, and MemoryObjectCache classes and their subclasses. Subclasses of

MemoryObject manage memory objects themselves while the other two classes manage memory

object caches in physical memory. The Domain class allocates virtual addresses to cached mem-

ory objects. It coordinates the AddressTranslation management of the physical dynamic address

translation mechanism with the logical MemoryObject Cache management of physical memory. In

later sections we will describe how the classes are used to implement the virtual memory in more

detail.

Subclasses of AddressTrunsZution (Table 2) provide support for hardware dependent virtual

memory management. They encapsulate hardware specific address translation information, such as

page tables or translation lookaside buffers. AddressTranslations also represent the hardware mem-

ory protection mechanism. They are updated by Domains and MemoryObjectCaches to fix address

translation faults. Subclasses of AddresshnslutionContuiner are used to associate a processor's

memory management unit (MMU) with its virtual memory page table map or translation lookaside

buffer (TLB). A different subclass of AddressTranslation and AddressTranslationContainer exists

for every architecture to which Choices has been ported. They are the only components of the

10

.

TMemoryRange

TftMemoryObjectView
t T t TPrimitiveFSMernory Ob ject

f MemoryOb ject

I Choices MemoryOb ject Classes I

- - ctor
ctor f read write
ctor read write
ctor t t t

1 - I

I Class II Methods I
I 1 1 Object 11 ctor I dtor I - I -

Table 3: Choices MemoryObject Classes

virtual memory management system that are machine dependent and need modification when it is

ported to a new architecture. The goal of our design is to restrict the functionality of these classes

to a minimum in order to simplify porting and allow for the possibility of simple hardware assisted

implement at ions in future architectures.

The Allocator classes are used to allocate memory (whether virtual memory or physical mem-

ory). The Store class is a subclass of Allocator used by MemoryObjectCaches to allocate and

deallocate physical memory in the virtual memory implementation.

The MemoryRange classes (Tables 3 and 4) support the machine independent virtual memory

system. A MemoryRange defines a finite sequence of indexed storage units. All units within

a MemoryRange are the same size, which must be an integer power of two. The length of the

sequence is stored and can be checked against an offset or unit index. The class c a n convert

between byte offsets into the range and its units.

The class MemoryObject is a subclass of MemoryRange used to define the access protocol to

the data of a memory object. Subclasses of MemoryObject define different implementations of

this protocol. One such subclass, BSDlnode, provides the MemoryObject interface to the data

contained in an inode on a Berkeley UNIX file system. Other subclasses, not shown in the tables,

provide the MemoryObject interface to the raw disk partitions, System V UNIX hodes, MS-DOS

files and other Choices file systems.

11

Memory objects may be mapped into virtual memory addresses so that the read, write, and

execute hardware instructions of a processor may be used to access the data directly. Examples of

such memory objects are the code and data of programs. The MemoryObjectCache class provides

a physical cache for the data of a memory object. It uses a MemoryObject to access the memory

object when it needs to fetch or store data. Cache update and writethrough is provided by the

operations on the MemoryObjectCache.

The Domain class maintains a collection of MemoryObjectCaches together with a map of those

MemoryObjectCaches into virtual memory. A Domain is responsible for the assignment of virtual

memory locations to the data that the MemoryObjectCache is caching. The MemoryObject Cache

itself contains no information about virtual addresses. This is important because it allows a cached

memory object to be shared in several different Domains or allows a MemoryObjectCache to be

accessed with Merent protections at different virtual address locations within the same (or another)

Domain. A Domain provides methods to convert from a virtual address to a MemoryObjectCache

and offset pair. This information is used by the Domain to maintain AddressTranslations.

In paged virtual memory systems, the MemoryObjectCache is specialized into a PagedMemo-

TyObjectCache. This subclass of MemoryObjectCache maintains the cache on a page basis (pa-

rameterized by the hardware page size) and operates in a machine independent manner like a

conventional paged address translation scheme.

5 Machine Dependent Details

The machine dependent portion of the Choices virtual memory management system consists of

classes in two hierarchies: AddressTranslation and AddressTranslationContainer. Subclasses in

12

these hierarchies implement the machine dependent portion of the virtual memory system for

different architectures.

An instance of class AddressTranslation is a machine dependent representation of the hardware

translation tables, page tables, or translation lookaside buffer. It provides a machine independent

interface to the rest of the memory management system. A different subclass of AddressTranslation

exists for each architecture Choices is ported to, new subclasses will be added as Choices is ported

to new architectures. The interface provided includes methods to add a virtual to physical transla-

tion at a given protection level addhfapping, to invalidate the mapping for a range virtual address

removehfapping, and to change the protection of a given range of virtual addresses changeprotec-

lion. The protection level arguments to these methods are machine independent and are mapped

by the AddressTranslation objects to whatever protection levels are provided by the hardware.

Every Domain has an associated AddressTrsnslation that it uses to implement its mapping

of virtual address ranges to MemoryObjectCaches. When address translation errors occur, the

Domain updates its AddressTranslation from machine independent information. The Domain can

determine what virtual addresses are currently valid and can request physical memory location

information from its MemoryObject Caches.

Since the complete virtual to physical mappings for a domain are actually kept in the com-

bination of the Domain and MemoryOb jectCache information, AddressTranslations are caches of

currently active hardware virtual to physical mappings, much like the pmap system of Mach [8].

This allows a fixed amount of physical memory to be dedicated to machine dependent address

translation.

The AddressTranslationContainer classes represent physical memory management units. There

is one instance of an AddressTranslationContainer subclass per processor in a multiprocessor sys-

13

?

tem. Like AddressTranslations, a different subclass exists for each architecture to which Choices

is ported. The add method of an AddressTranslationContainer class takes an AddressTranslation

as an argument and switches the hardware dynamic address translation mechanism to use the

mappings of the AddressTranslation. The enable method turns the hardware dynamic address

translation on. The method uses its AddressTranslation argument as the initial mapping. Af-

ter it is enabled, the AddressTranslationContainer will accept other AddressTranslations. Before

the enable method is invoked, the processor may address physical memory directly, without dy-

namic address translation taking place. The enable method is used at boot time once the initial

AddressTranslations are constructed.

6 Machine Independent Details

The Choices virtual memory management and page replacement algorithms are written as machine

independent modules that manage memory objects and their caches. In this section, we describe

the methods of the classes implementing this component of the system.

6.1 MemoryRanges

The MemoryRange class (Tables 3 and 4) defines a finite sequence of indexed storage units. Methods

are provided to return the size of the units (unitsize and log2UnitSize) and the number of units

(numberOfUnits). Methods also convert a byte offset into a unit number (oflsetToUnit) and vice

a versa (unitToOflset).

14

8.2 MemoryObjects

The class MemoryObject is a subclass of MemoryRange used to define the access protocol for data of

a memory object. The primary access protocols are read and write and take arguments that specify

the offset of the data and how many units are to be accessed. Subclasses of MemoryObject define

different methods that implement this protocol. Current MemoryObject classes exist to represent

Berkeley UNIX inodes, System V UNIX inodes, and MS-DOS files as well as other experimental

file system structures currently being developed.

A memory object may be too large to reside in virtual memory (for example, a large disk). The

MemoryOb jectView subclass of MemoryObject provides a window into another Memory Object.

The window may be offset from the start of the MemoryObject. It uses the length inherited

from MemoryRange to restrict access to the MemoryObject under the window. Methods for a

MemoryObjectView allow the window to be moved. Several MemoryObjectViews may exist for

the same MemoryOb ject.

6.3 Domains

The memory objects that the instructions of a process can access are represented by its Domain.

The Domain contains a list of MemoryObjectCaches and maintains the correspondence between

the virtual memory addresses and the physical memory locations used for the caching of memory

object data. The Domain provides a realization of the Choices virtual memory scheme by using

this information to update the hardware dynamic address translation mechanism through method

calls to an AddressTranslation object.

A Domain converts a virtual address to a memory object and offset pair. The memory object

is represented in the Choices system by an instance of a MemoryObject class. A MemoryObject is

15

Choices MemojObjectCache and Domain Classes 1

Table 4: Choices MemoryObject Cache and Domain Classes

cached by a MemoryObjectCache. The offset is used by the methods of the MemoryObjectCache

to determine the physical location of the data if it is in the cache or to fetch the data from the

MemoryObject and place it in the cache if it is not. A Domain can also convert a MemoryObject

and offset pair back into a virtual address.

The Domain supports MemoryObject Cache overlays or multi-level cacheing. Each MemoryOb-

jectCache overlay is kept in an ordered list of MemoryObjectCaches. When the conversion of a

virtual address to a MemoryObject and offset pair is performed, the overlay MemoryObjectCaches

in the list are checked, one at a time, until a MemoryObjectCache is found that can provide the

offset to physical cache mapping. Using the overlays, a MemoryObjectCache and, therefore it's

MemoryObject, can be copied on write from one Domain to another. A copy-on-write MemoryOb-

ject is implemented by appending a write cache after the read cache of the copied MemoryObject.

The write cache will have its own MemoryObject for storing modified data.

The Domain contains a set of desired access rights for each range of a MemoryObject cached by

a MemoryObjectCache. These are used to maintain the access rights for the corresponding virtual

memory addresses. Some of the Domain classes are shown in Table 4.

The add method of a Domain binds a virtual address range to a MemoryObject offset pair.

There are two forms of the add method. One binds a given virtual memory address range argu-

ment to the MemoryObjectCache. The other selects a range of virtual address that is large enough

16

,

to contain the memory object and binds the starting virtual address to the MemoryObjectCache.

If necessary a MemoryObjectCache list is created and associated with the virtual address range.

When a MemoryObjectCache is added at a virtual address range that already has a MemoryObject-

Cache, the new MemoryObject Cache overlays the mappings of the previous MemoryOb ject Cache.

The new MemoryObjectCache is inserted at the head of the MemoryObjectCache list. The Ad-

dressTranslation method removeMapping may be invoked to remove any outstanding hardware

physical address translations that would interfere with the new MemoryObject Cache.

In our implementation, it is important that MemoryObjectCaches do not contain knowledge

of the actual virtual addresses that are assigned for their caches. This permits a MemoryObject-

Cache to have a cache that is mapped into different virtual memory locations in different Domains.

Obviously, this will only work for a memory object that contains position independent data. Files

and disks are good examples of such memory objects. The add method on a Domain also invokes

a mappingList method on the MemoryObjectCache to inform it that it is has been added to a

Domain.

The method Ternme deletes a MemoryObject Cache from the MemoryObject Cache list associ-

ated with a virtual address range. It deletes the mapped virtual address range and MemoryOb-

jectCache list if the list is empty. The AddressTranslation method removeMapping is invoked to

modify the hardware physical address translation mechanism for the range of virtual addresses that

has been removed.

The Domain manages demand fetching of memory from memory objects and address translation

errors or aborts. Upon an address translation error, the fizFadt method is invoked with the virtual

address and the type of operation (read, write, or execute) that caused the fault as arguments. The

Domain translates the virtual address into a MemoryObject offset pair. It searches the Memory-

17

Objectcache list for a MemoryObjectCache that can provide both a physical address mapping for

the given virtual address and the appropriate access rights to the data for the requested type of

operation. A MemoryObjectCache may fetch data from the memory object by invoking methods

on it’s associated MemoryOb ject instance if necessary. If a physical address is found, the Domain

informs its AddressTranslation of the appropriate mapping. Otherwise, the Domain returns an

error.

0.4 MemoryObjectCaches

The class MemoryObjectCache (Table 4) and its subclasses define objects in Choices that are re-

sponsible for mapping the data of a memory object into the physical memory of a computer. All,

part or none of a memory object’s data can be cached into physical memory by a MemoryObject-

Cache. The cache is filled with data by invoking methods on the MemoryObject that manages the

storage of the memory object.

The fizFcrvZt method of a MemoryObjectCache requests a physical memory location of unit size

from the Store physical memory allocator and loads the cache location from the memory object it

is cacheing. (A PagedMemoryObjectCache, for example, will read a whole page of data into the

cache.) It returns the physical cache 10cation.~

MemoryObjectCaches may, on occasion, be forced to discard the data in a physical cache

location. For example, this may occur when a Store cannot find enough physical memory to allocate

to a MemoryObjectCache so that it may fix a fault. One of the active MemoryObjectCaches must

release physical memory.

Each MemoryObjectCache maintains a list of all the Domains that are sharing its cache. This

‘The phy~Addr method converts a memory object offiet into the address of the physical cache location containing
the data that is associated with the offiet.

18

list is used by the MemoryObjectCache to invoke a method on each Domain to indicate that an

offset within the MemoryObjectCache is no longer resident in physical memory. Information in the

Domain is used to decide whether to update its AddressTranslation or not.

Each MemoryObjectCache has a maximum working set size of physical memory that it may

commit to cacheing the memory object. In the present implementation, the working set sizes are

determined statically and empirically. Adaptive working set algorithms are being investigated.

Each MemoryObjectCache also keeps track of the current resident set of its data at any time. If

new data is accessed within the memory object and there is no physical memory left in the system,

one of two things will happen. If the MemoryObjectCache’s current resident set size is greater

than its working set size, it will free up less frequently accessed memory in the cache and re-use

the physical memory to cache the newly accessed data. If the resident set size is smaller than the

working set size, the MemoryOb jectCache system acquires more physical memory by informing

infrequently accessed MemoryObjectCaches to swap out some or all of their data.

A MemoryObjectCache may or may not manage a particular offset within a memory object.

The methods isManaged and manage exists to inquire about an offset. A copy-on-write effect

can be achieved using the MemoryObjectCache list and the isManaged and manage methods of

the MemoryObjectCaches in the list. The original MemoryObjectCache is made read-only. A

MemoryObjectCache is appended to the list that initially manages none of the range it represents

and has an empty MemoryObject for backing store. The Domain invokes the changeprotection

method on its AddressTranslation to make all the range of the MemoryObject read only in hardware.

When a write fault occurs, the data in the unit of the read-only MemoryObjectCache are copied

into the appended MemoryObjectCache which then manages future accesses to the unit. The

appended MemoryObjectCache returns the new physical address. The Domain uses this physical

19

address to update the AddressTranslation.

7 Conclusions

This paper described the design and implementation of the virtual memory system for the Choices

operating system. The implementation is based on an object-oriented architecture and is imple-

mented in an object-oriented language. The software is organized by a class hierarchy.

The object-oriented approach has little impact on performance. The software is coded in C++

which provides a very efficient implementation of method invocation and inheritance. The virtual

memory scheme benefits from an object-oriented approach because it allowed us to prototype differ-

ent implementation schemes, reuse code, maintain machine independent abstractions, encapsulate

implementation decisions, separate policy from mechanism and provide for common interface.

In Choices, the virtual memory concepts are derived from many existing systems. However, their

implementation in an object-oriented architecture is, we believe, new. The use of object-oriented

design and programming to build an operating system is also significant.

The design of our system permits paging and page replacement to be tailored to a MemoryObject

and its cache. This should permit us to experiment with cache replacement and data fetching

algorithms that can take advantage of access patterns that are particular to a type of memory object.

The Domain manages the implementation of the machine independent virtual memory management

schemes using machine dependent dynamic address translation mechanisms. Memory Object Caches

are independent of the virtual addresses that are used to access data in the caches and this allows

them to be easily shared or even relocated. For efficiency and additional functionality, the Domain

supports a scheme of overlayed caches. This scheme supports copy on write, recovery caches for

20

fault-tolerant computing and local and global memory hierarchies.

Choices is currently being ported from the Multimax to an Intel iPSC/2 hypercube. The

memory management system is being adapted to use shared networked virtual memory. When this

is complete, a further account of the Choices virtual memory system will be written.

References

Lubomir Bic and Alan C. Shaw. The Logical Design of Opemting Systems. Prentice Hall,
Englewood Cliffs, New Jersey, second edition, 1988.

Roy Campbell, Gary Johnston, and Vincent Russo. Choices (Class Hierarchical Open Interface
for Custom Embedded Systems). ACM Opemting Systems Review, 21(3):9-17, July 1987.

Roy Campbell, Vincent Russo, and Gary Johnston. The design of a multiprocessor operating
system. In Proceedings of the USENIX C++ Workshop, pages 109-123, 1987. Also Technical
Report No. UIUCDCS-R-87-1388, Department of Computer Science, University of Illinois at
Urbana- Champaign.

David R. Cheriton. The V kernel: A software base for distributed systems. IEEE Software,
1(2):19-42, April 1984.

Intel Corporation, Santa Clara, California. 80386 System Software Writer's Guide, 1987.

National Semiconductor Corporation, Santa Clara, California. Series 32000 Databook, 1986.

James L. Peterson and Abraham Silberschatz. Opemting System Concepts. Addison- Wesley
Publishing Company, Reading, Massachusetts, second edition, 1985.

Richard Rashid et al. Machine-independent virtual memory management for paged unipro-
cessor and multiprocessor architectures. In Proceedings of the International Conference on
Architectuml Support for Programming Languages and Opemting Systems, pages 31-39, 1987.

Richard F. Rashid and George G. Robertson. Accent: A communication oriented network op-
erating system kernel. In Proceedings of the ACM Symposium on Operating System Principles,
December 1981.

Bjarne Stroustrup. The C++ Progmmming Language. Addison- Wesley Publishing Company,
Reading, Massachusetts, 1986.

Andrew S. Tanenbaum and Sape J. Mullender. An overview of the Amoeba distributed oper-
ating system. ACM Opemting Systems Review, 15(3):51-64, July 1981.

L. D. Wittie and A. Van Tilborg. MICROS - a distributed operating system for MICRONET
- a reconfigurable network computer. In H. A. Freeman and K. J. Thurber, editors, Tutorial:
Microcomputer Networks, pages 138-147. IEEE Press, 1981.

21

